CONNECTEDNESS OF CERTAIN RANDOM GRAPHS

RV

L. A. SHEPP *AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974, USA*

Dedicated to Aryeh Dvoretzky

ABSTRACT

L. Dubins conjectured in 1984 that the graph on vertices $\{1, 2, 3, \ldots\}$ where an edge is drawn between vertices i and j with probability $p_{ii} = \lambda / max(i, j)$ independently for each pair *i* and *j* is a.s. connected for $\lambda = 1$. S. Kalikow and B. Weiss proved that the graph is a.s. connected for any $\lambda > 1$. We prove Dubin's conjecture and show that the graph is a.s. connected for any $\lambda > \frac{1}{4}$. We give a proof based on a recent combinatorial result that for $\lambda \leq \frac{1}{4}$ the graph is a.s. disconnected. This was already proved for $\lambda < \frac{1}{4}$ by Kalikow and Weiss. Thus $\lambda = \frac{1}{4}$ is the critical value for connectedness, which is surprising since it was believed that the critical value is at $\lambda = 1$.

§1. Introduction

In an elegant paper [KW], S. Kalikow and B. Weiss made a significant extension of the now-classical theory [ER], [B] of connectedness of finite random graphs to a class of infinite random graphs. The interesting class of infinite random graphs are those on a countably infinite vertex set N where each edge is drawn randomly and independently with probability p_{ii} given for each pair of vertices i and j in N, and where $0 \leq p_{ij} < 1$ satisfy the basic **condition that**

(1.1)
$$
\sum_{i \in A} \sum_{j \notin A} p_{ij} = \infty
$$
 for every proper subset A of N,

which, by the Borel-Cantelli lemma, says that A and A^c are connected with

Received December 12, 1988

probability 1 for every subset A of N . Of course there are uncountably many A's so (1.1) does not imply connectedness.

Under (1.1), the fundamental dichotomy of Kalikow and Weiss [KW] says that the event that the graph is connected has probability either 0 or 1. Moreover, when it is not connected, they show it has a.s. infinitely many components. The general problem is to decide which of the two possibilities holds for a given p_{ij} satisfying (1.1). It seems difficult to give a necessary and sufficient condition on p_{ij} for connectedness under (1.1). We remark that under (1.1) a necessary condition for connectedness is that

(1.2)
$$
Ev_{ij} = \infty \quad \text{for every } i \in N, \ \ j \in N, \ i \neq j
$$

where v_{ii} = the number of self-avoiding paths from *i* to *j* in the graph. It seems possible that (1.2) is also sufficient under (1.1) .[†]

Many results are known [B] about connectedness of graphs in the finite case with equal edge probabilities and these results form the basis of the techniques used here and in [KW] and are due to Erdos and Renyi [ER]. Since it appears difficult to give necessary and sufficient conditions on p_{ii} for connectedness to hold in the general case of (1.1) , it is reasonable to ask about specific choices of p_{ii} 's. The class of interest here and in [KW] depends on a parameter λ and is given for $0 < \lambda < 2$ by

(1.3)
$$
p_{ij} = p_{ij}(\lambda) = \lambda / max(i, j), \quad i, j \in N = \{1, 2, ...\}.
$$

Such random graphs satisfy (1.1) for all λ and are interesting because it was shown in [KW] that for $\lambda > 1$ connectedness holds, while for $\lambda < \frac{1}{4}$ disconnectedness holds, since the probability of connectedness is clearly monotonically increasing in λ , there is by the fundamental dichotomy theorem [KW] a critical λ_0 so that for $\lambda > \lambda_0$ the graph is connected while for $\lambda < \lambda_0$ the graph is disconnected a.s. Thus [KW] proved that $\frac{1}{4} \leq \lambda_0 \leq 1$ and it was conjectured that $\lambda_0 = 1$ is the actual value.

Lester Dubins had conjectured long ago that $\lambda = 1$ was a case of connectedness. We show in §2 that the critical value is $\lambda_0 = \frac{1}{4}$ so that Dubin's conjecture is true (with room to spare). We show in §3 that (1.2) holds if and only if $\lambda > \frac{1}{4}$, which indicates that it may be true that (1.2) is equivalent to connectedness.[†] Although (1.2) is not an easy condition to use, it is easier than directly proving connectedness as seen in §3.

t Added in proof. R. Durrett has given a counterexample to this, to appear.

REMARK. Perhaps because the critical value was thought to be at $\lambda = 1$, [KW] pointed out the analogy to the fact that the critical value is $\lambda = 1$ in an apparently unrelated problem, namely that of deciding for which $0 < \lambda < 2$ arcs of length λ/n , $n = 2, 3, \ldots$ cover a unit circumference C under random rotations. [KW] refer to [S] (see [K, ch. 11] for a more readable proof) where it is shown that the arcs cover C infinitely often with probability 0 or 1 according as $\lambda < 1$ or $\lambda \ge 1$. Despite that $\lambda_0 = \frac{1}{4}$ in the connectedness problem and $\lambda_0 = 1$ in the covering problem, the two problems are rather more directly related as follows. Namely if $A \subset N$ is a component of the graph then there is no link between A and A^c (since there are uncountably many $A \subset N$ this can occur for some A even though it has probability 0 for each fixed A by (1.1)). Similarly each fixed point $x \in C$ is covered with probability one by the arcs but since C is uncountable some point may not be covered. The analogy is actually much stronger: The connectedness problem is *exactly* equivalent to a covering problem by a random union U of subsets B_{ii} of $I = (0, 1)$. Let

$$
(1.4) \t B_{ij} = \{x \in (0, 1) : x_i \neq x_j\}
$$

where $x = x_1x_2...$ is the binary expansion of x (the set of x where this is ambiguous is countable and does not matter). Now include B_{ii} in the union U with probability p_{ij} . Then $U = I$ w.p.1 if and only if the graph with edge probabilities p_{ij} is connected. Indeed a subset A of N has no link to $N - A$, i.e. the graph is not connected if and only if $x = x_A = x_1x_2...$ where $x_i = \chi(i \in A)$ is not covered by U. The equivalence of the two problems is not useful because the methods of [S] and [K] break down when the covering sets are not intervals. The sets B_{ii} are far from intervals and have many holes.

We give in §3 a somewhat different proof of the theorem of Kalikow and Weiss [KW] that $\lambda_0 \geq \frac{1}{4}$ based on an interesting combinatorial identity [DMOS]. Whereas [KW] prove that for $\lambda < \frac{1}{4}$ the graph is disconnected, this proof shows that it also is disconnected for $\lambda = \frac{1}{4}$. It is perhaps surprising that one can answer the question for every λ , even at the critical value. It would be interesting to consider other p_{ij} 's, e.g. $p_{ij} = \lambda(i + j)$ or $p_{ij} = \lambda/\sqrt{i^2 + j^2}$.

§2. $\lambda_0 \leq \frac{1}{4}$

We prove that if $\lambda > \frac{1}{4}$ then the graph is a.s. connected by sharpening the method of [KW]. Their method relies on the technique of Erdos and Renyi

^{*} See footnote at the end of the paper.

26 L. A. SHEPP Isr. J. Math.

[ER, B] to prove that if $p_{ii} \equiv c/n$ for a graph on {1, 2, ..., n} then if $c > 1$ there is a giant component, i.e. one whose size is a positive fraction of n . We sharpen the method by extending the technique of [ER] to finite graphs with nonconstant edge probabilities using the method of Chebysheff, Esscher, Chernoff, Bahadur-Rao, Donsker-Varadhan, now called large deviation theory.

The following lemma is implicit in [KW].

LEMMA 2. *Suppose* λ *has the property that there exist* $\epsilon > 0$ *,* $\gamma > 0$ *,* $\delta > 0$ *such that for large n the subgraph G(n) on n vertices,*

$$
\{\lfloor \varepsilon n\rfloor + 1, \lfloor \varepsilon n\rfloor + 2, \ldots, \lfloor \varepsilon n\rfloor + n\}
$$

with edge probabilities $p_{ij} = \lambda / max(i, j)$ has maximum component of size at *least yn with probability at least* δ *. Then the graph is connected, i.e.,* $\lambda_0 \geq \lambda$.

PROOF (after [KW]). Consider any $i < \lfloor \varepsilon n \rfloor$. The chance that i is linked directly to some element of the maximum component of the subgraph *G(n)* is at least

$$
\[1-\left(1-\frac{1}{n(1+\varepsilon)}\right)^{n}\] \approx e^{-\gamma/(1+\varepsilon)} \triangleq \theta
$$

given that the maximum component of $G(n)$ is at least of size γn . Thus any pair i and i each less than $\left| \varepsilon n \right|$ are connected to each other via the maximum component of $G(n)$ with probability at least $\delta \cdot \theta^2$. But we can choose an infinity of disjoint subgraphs $G(n_k)$ by choosing $n_{k+1} > n_k(\varepsilon+1)/\varepsilon$, $k = 1, 2, \ldots$, and i and j are independently linked to each other through the maximum component of $G(n_k)$ with probability at least $\delta \cdot \theta^2$ for each k. Thus i and j are linked with probability one. Since there are only countably many pairs (i, j) we are done.

It remains only to prove that if $\lambda \geq \frac{1}{4}$ then the hypothesis of the lemma holds, i.e. for large *n*, the maximum component of $G(n) = \{ \lfloor \varepsilon n \rfloor + 1, \ldots, \lfloor \varepsilon n \rfloor + n \}$ is of size at least γn with probability at least δ .

Choose an integer $L \ge 1$ and consider the graph G on $\{1, 2, \ldots, n\}$ where n is a multiple of L and where the edge probabilities are for $i, j \in \{1, ..., n\}$ where *n* is a multiple of L and where the edge probabilities are for $i, j \in$ $\{1,\ldots,n\},\$

$$
(2.1) \t p'_{ij} = \pi_l \triangleq \frac{\lambda}{\left(\epsilon + \frac{l}{L}\right)^n} \text{ if } \max(i,j) \in B_l \triangleq \left\{\frac{l-1}{L}n+1,\ldots,\frac{l}{L}n\right\}.
$$

It is clear by monotonicity, or coupling, that the maximum component of $G(n)$ is stochastically at least as large as that of G since it is easy to see that

$$
(2.2) \t\t p'_{ij} \leq p_{\lfloor en \rfloor + i, \lfloor en \rfloor + j} \t\t \text{for all } i \text{ and } j \in \{1, \ldots, n\},
$$

and increasing the number of edges can only increase the size of the maximum component. We need to show that G has a giant component.

We first seed, or start off, a large component. Thus suppose a_{i0} , $l = 1, \ldots, L$ are arbitrary but fixed integers. We first show that we can choose $\delta > 0$ and $0 < y < 1/(2L)$ so that for large n, the subgraph G' of G consisting of the union of B'_1 , the first $M = |n\gamma|$ elements of each block B_i ,

$$
(2.3) \quad B'_i \triangleq \left\{ \frac{l-1}{L} n + 1, \ldots, \frac{l-1}{L} n + M \right\} \subset B_i, \ l = 1, \ldots, L, \ M = \lfloor n \gamma \rfloor
$$

has at least a_{10} elements each joined to element 1 of G by an edge, with probability at least δ .

To see this note that the number of elements of B_i linked to 1 by an edge with edge probabilities p'_{ii} in (2.1) is asymptotically Poisson as $n \to \infty$ with parameter $\pi_l \cdot \gamma_n = \lambda \gamma/(\varepsilon + l/L)$. Since this is a fixed number and a_{l0} , $l =$ $1, \ldots, L$ are fixed this will have some positive probability, call it δ , for all large *n* for any fixed λ , γ , ε , L .

Now let A_{10} be the actual set of elements of B_i and note that the union of A_{10} , $l = 1, \ldots, L$ are all connected to 1 and hence connected. If $A_{l0}, A_{l1}, \ldots, A_{lk}$, $l = 1, \ldots, L$ have been defined for a $k \ge 0$, define $A_{l,k+1}$ as the set of elements of $B_{i} - B_{i}'$ which are directly linked by an edge to some element of $A_{1k} \cup A_{2k} \cup \cdots \cup A_{1k}$ and which are not already in any of $A_{l0}, A_{l1}, \ldots, A_{lk}$. In other words, $A_{i,k+1}$ are those elements of $B_i - B'_i$ which are connected by a path of length $k + 1$ but not by a path of smaller length to some element of $A_{10} \cup A_{20} \cup \cdots \cup A_{L0}$. Denote $|A_{lk}|$ by a_{lk} , $l = 1, \ldots, L$, $k \ge 0$.

If for some l and some k

$$
(2.4) \t a_{l0}+a_{l1}+\cdots+a_{lk}\geq \gamma n
$$

then there is a giant component because the maximum component exceeds that of the component of the element 1 which is already a positive fraction γ of n if (2.4) holds for some l and k. However, if (2.4) fails for k and each l, then we show that the process can be continued to stage $k + 1$ with high probability and so on until (2.4). does hold with positive probability:

28 L. A. SHEPP Isr. J. Math.

To see this, suppose there exists a $\theta > 1$ and a vector (ξ_1, \ldots, ξ_L) with positive entries such that for $k' < k$,

(2.5)
$$
\sum_{l=1}^{L} \xi_{l} a_{l,k'+1} > \theta \sum_{l=1}^{L} \xi_{l} a_{l,k'}.
$$

We will actually choose $\zeta_l = 1/\sqrt{l}$, $l = 1, \ldots, l$ for a sufficiently large L. We want to show that with high probability (2.5) continues to hold for $k' = k$. Now given a_{i_0}, \ldots, a_{ik} for $l = 1, 2, \ldots, L$ and *M*, $a_{1:k+1}$ is a random variable conditionally stochastically equal to the sum of $n/L - M - a_{11} - a_{12} - \cdots - a_{1k}$ independent Bernoulli variables with success probability from (2.1) given by

$$
(2.6) \ \ P_1 \triangleq 1 - (1 - \pi_1)^{a_{1k}} (1 - \pi_2)^{a_{2k}} \cdots (1 - \pi_L)^{a_{1k}} \approx \sum_{l'=1}^L \frac{\lambda}{\varepsilon + l'/L} a_{l'k} \frac{1}{n}.
$$

For general $l \geq 1$, $a_{l,k+1}$ is a random variable which is conditionally stochastically equal to the sum of $n/L - M - a_{11} - a_{12} - \cdots - a_{lk}$ independent Bernoulli variables with success probability from (2.1) given by

$$
(2.7) \qquad p_l \triangleq 1 - (1 - \pi_l)^{a_{1k} + \dots + a_k} (1 - \pi_{l+1})^{a_{l+1,k} + \dots + (1 - \pi_L)^{a_{1k}}}
$$
\n
$$
\approx \left(\frac{\lambda}{\varepsilon + l/L} (a_{lk} + \dots + a_{lk}) + \sum_{l'-l+1}^L \frac{\lambda}{\varepsilon + l'/L} a_{l'k} \right) \frac{1}{n}.
$$

Since $M < \gamma n$ and (2.4) holds for k,

$$
(2.8) \qquad \qquad \frac{n}{L}-M-a_{l1}-\cdots-a_{lk}\geq n\left(\frac{1}{L}-2\gamma\right)
$$

so that $a_{i,k+1}$ is conditionally stochastically larger than the sum of $n(1/L - 2\gamma)$ independent Bernoulli variables with success probability as in (2.7), $l =$ 1,..., *L*. Since $a_{l,k+1}$, $l=1,\ldots,L$ are independent, by (2.7), (2.8), and Chernoft's inequality, for any $\alpha > 0$ we have with p_i as in (2.7),

$$
P\left(\theta \sum_{l=1}^{L} \zeta_{l} a_{lk} > \sum_{l=1}^{L} \zeta_{l} a_{l,k+1} | a_{l0}, \ldots, a_{lk}, l = 1, \ldots, L, M\right)
$$

\n
$$
\leq E(e^{\alpha(\theta \sum_{l=1}^{L} \zeta_{l} a_{lk} - \sum_{l=1}^{L} \zeta_{l} a_{l,k+1})} | a_{l0}, \ldots, a_{lk}, l = 1, \ldots, L, M)
$$

\n
$$
\leq e^{\alpha(\theta \sum_{l=1}^{L} \zeta_{l} a_{lk})} \prod_{l=1}^{L} (e^{-\alpha \zeta_{l}} p_{l} + 1 - p_{l})^{n(1/L - 2\gamma)}.
$$

Since $1 - x \leq \exp(-x)$ we have that the rhs of (2.9) is less than

$$
(2.10) \quad \exp\left(\alpha\theta \sum_{l=1}^{L} \xi_{l} a_{lk} - n\left(\frac{1}{L} - 2\gamma\right) \sum_{l=1}^{L} \left(1 - e^{-\alpha \xi_{l}}\right) p_{l}\right) \leq e^{-\eta (a_{lk} + \dots + a_{lk})}
$$

for some $n>0$, provided that for small positive α the exponent on the left in (2.10) is less than that on the right of (2.10). For this we need that

$$
(2.11) \qquad \theta \sum_{l=1}^{L} \xi_{l} a_{lk} - n \left(\frac{1}{L} - 2\gamma \right) \sum_{l=1}^{L} \xi_{l} p_{l} < - \eta (a_{lk} + \cdots + a_{Lk}).
$$

Putting in the approximation to p_l given in (2.7) we need

$$
\theta \sum_{l=1}^{L} \xi_{l} a_{lk} - \lambda \sum_{l=1}^{L} \xi_{l} \left\{ \frac{a_{lk} + \dots + a_{lk}}{\varepsilon + l/L} + \sum_{l'=l+1}^{L} \frac{a_{l'k}}{\varepsilon + l'L} \right\} \left(\frac{1}{L} - 2\gamma \right) \n\leq -\eta (a_{lk} + \dots + a_{Lk}).
$$

In order that we can find $\theta > 1$, $\varepsilon > 0$, $\eta > 0$ such that (2.12) holds for all a_k, \ldots, a_{Lk} it is necessary and sufficient that the coefficient of a_k on the left of (2.12) is less than the coefficient of a_{LK} on the right for $l = 1, \ldots, L$. That is we must have for $l = 1, \ldots, L$, for some $\theta > 1$, $\eta > 0$, $\varepsilon > 0$,

$$
(2.13) \t\t\t\t\t\theta\xi_l-\frac{\lambda}{L}\bigg[\sum_{l'=l}^L\frac{\xi_{l'}}{\varepsilon+l'L}+\frac{1}{\varepsilon+l/L}\sum_{l'=1}^{l-1}\xi_{l'}\bigg]<-\eta.
$$

Since $\theta > 1$, $\varepsilon > 0$, $\eta > 0$ are otherwise arbitrary we must require

(2.14)
$$
\xi_{l} < \lambda \bigg[\sum_{l'=l}^{L} \frac{\xi_{l'}}{l'} + \frac{1}{l} \sum_{l'=1}^{l-1} \xi_{l'} \bigg], \qquad l = 1, ..., L.
$$

This must hold for some positive ζ_1, \ldots, ζ_L , and if it does, then it will follow from (2.9) that

$$
P\left(\sum_{l=1}^{L} \zeta_{l} a_{l,k+1} < \theta \sum_{l=1}^{L} \zeta_{L} a_{l,k} \mid a_{l0}, \ldots, a_{lk}, l = 1, \ldots, L, M\right) \\
\leq e^{-\eta(a_{1k} + \cdots + a_{1k})}.
$$

But then with the remaining probability we will have

(2.16)
$$
\sum_{l=1}^{L} \xi_{l} a_{l,k+1} > \theta \sum_{l=1}^{L} \xi_{l} a_{l,k}
$$

and so (2.5) continues and so, as long as k is such that (2.4) holds,

$$
(2.17) \qquad \qquad \sum_{l=1}^{L} \xi_{l} a_{l,k} > \theta^{k} \sum_{l=1}^{L} \xi_{l} a_{l,0} > \theta^{k} \min_{1 \leq l \leq L} \xi_{l} \sum_{l=1}^{L} a_{l,0}.
$$

Since $\theta > 1$ this says that $\Sigma \xi_i a_{l,k}$ is large and since $\xi_l > 0$ for $l = 1, \ldots, L$, we must have that $a_k > 0$ for some $l = 1, \ldots, L$ and the process continues until (2.4) holds on a set of positive probability. This probability is positive because the upper bound (2.15) forms the kth term of the series

$$
(2.18) \t\t\t \sum_{k=0}^{\infty} e^{-\eta \theta^{k} (\min_{1 \leq i \leq L} \xi_{i} / \max_{1 \leq i \leq L} \xi_{i}) \Sigma_{i=1}^{L} a_{i,0}}
$$

which sums to less than 1 because of the last bound in (2.17) and the fact that $a_{l,0}$, $l = 1, \ldots, L$ can be chosen large. Thus we need to show that if $\lambda > \frac{1}{4}$ then positive ζ_l in (2.14) can be found. But (2.14) is equivalent to the maximum eigenvalue of the matrix $A_{ll'} = 1/\max(l, l')$, $1 \le l, l' \le L$, being larger than $1/\lambda$. We will show that as $L \rightarrow \infty$ this maximum eigenvalue is at least 4, so that if $\lambda > \frac{1}{4}$ there will exist an L such that ξ_1, \ldots, ξ_L exists to make the proof work.

Indeed A is a symmetric matrix with positive entries whose largest eigenvalue is positive by Frobenius's theorem. By the Weyl-Courant lemma, [RN, p. 237] the largest eigenvalue is given by

(2.19)
$$
\max_{\zeta \neq 0} \frac{(A\xi, \xi)}{(\xi, \xi)} \geq \frac{(A\xi', \xi')}{(\xi', \xi')}
$$

where

(2.20)
$$
\xi'_l = \frac{1}{\sqrt{l}}, \qquad l = 1, ..., L.
$$

Since

$$
(A\xi', \xi') = \sum_{l=1}^{L} \sum_{l'=1}^{L} \frac{1}{\sqrt{l}\sqrt{l'} \max(l, l')}
$$

$$
(2.21) \qquad \qquad = \sum_{l=1}^{L} \frac{1}{l^{3/2}} \sum_{l'=1}^{l-1} \frac{1}{l'} + \sum_{l=1}^{L} \frac{1}{\sqrt{l}} \sum_{l'=l}^{L} \frac{1}{l'^{3/2}}
$$
\n
$$
= 4 \sum_{l=1}^{L} \frac{1}{l} + O(1)
$$

while

(2.22)
$$
(\xi', \xi') = \sum_{l=1}^{L} \frac{1}{(\sqrt{l})^2} = \sum_{l=1}^{L} \frac{1}{l}
$$

we see from (2.19) that the maximum eigenvalue of A is asymptotically at least 4. It can be shown directly that the limiting maximum eigenvalue is 4 but we do not need this and omit it.

The proof is complete.

 ${3.}$ $\lambda_0 \geq \frac{1}{4}$

We give a new proof that if $\lambda < \frac{1}{4}$ then the graph is a.s. disconnected which is similar to the proof of [KW] but is slightly tighter and enables one to show that $\lambda = \frac{1}{4}$ is also a case of disconnectedness. We need the following lemma.

LEMMA 2. *If* v_{ij} *is the number of self-avoiding paths from i to j in a graph satisfying* (1.1) *and if for some i* $\neq j$ *,*

$$
(3.1) \t E v_{ij} < \infty,
$$

then the graph is a.s. disconnected.

PROOF. If $Ev_{ij} < \infty$, then by replacing a finite number of p_{ij} 's by zero (call the new p_{ii} 's, p'_{ii}) we can make $Ev'_{ii} < 1$ where s' refers to p'_{ii} . But then

$$
(3.2) \t\t\t P(v'_{ij} > 0) \leq Ev'_{ij} < 1
$$

and so the graph with p'_{ii} has probability less than one of being connected. But the same must then be true for the original p_{ij} since a finite number of Bernoulli edge choices has positive probability to produce all failures or non-edges. By the fundamental theorem [KW] the probability that the original graph is connected must be zero since it is $\lt 1$.

We next give a formula for Ev_{ii} . This is slightly neater if we add the vertex 0 to $N = \{1, 2, ...\}$ keeping the same rule (1.3) for p_{ij} . Then the expected number of self-avoiding paths from vertex 0 to vertex 1 is

(3.3)

$$
Ev_{01} = p_{01} + \sum_{k \geq 1} \sum_{\sigma \in \mathcal{S}^k} \sum_{1 < s_1 < \cdots < s_k} p(0, s_{\sigma_1}) p(s_{\sigma_1}, s_{\sigma_2})
$$

$$
\cdots p(s_{\sigma_{k-1}}, s_{\sigma_k}) p(s_{\sigma_k}, 1)
$$

where the sum is over all $k \ge 1$ and all $k + 1$ -step paths from 0 to 1 which visit distinct vertices $s_1 < s_2 < \cdots < s_k$ before visiting 1 in some permuted order $\sigma \in \mathcal{S}_k$, the set of permutations on $\{1, \ldots, k\}$. Using (1.3) we get for $p_{ij} =$ λ /max (i, j) ,

$$
Ev_{01} = \frac{\lambda}{1} + \sum_{k \geq 1} \sum_{\sigma \in \mathscr{S}_k} \sum_{1 < s_1 < \cdots < s_k} \frac{\lambda}{s_{\sigma_1}} \frac{\lambda}{\max(s_{\sigma_1}, s_{\sigma_2})} \cdots \frac{\lambda}{\max(s_{\sigma_{k-1}}, s_{\sigma_k})} \frac{\lambda}{s_{\sigma_k}}
$$
\n
$$
= \lambda + \sum_{k \geq 1} \lambda^{k+1} \sum_{\sigma \in \mathscr{S}_k} \sum_{1 < s_1 < \cdots < s_k} \frac{1}{s_1^{\epsilon_1(\sigma)} s_2^{\epsilon_2(\sigma)} \cdots s_k^{\epsilon_k(\sigma)}}.
$$

The powers $\varepsilon_i(\sigma)$, $j = 1, \ldots, k$ in (3.4) are either 0, 1, 2, where if we let $\sigma_0 = s_0 = 0$, and $\sigma_{k+1} = -1$, and $s_{-1} = 1$ then for $1 \leq j \leq k$,

(3.5)
$$
\varepsilon_j(\sigma) = \begin{cases} 0 & \text{if } \sigma_l = j \text{ and neither of } \sigma_{l-1} \text{ and } \sigma_{l+1} \text{ is } < j, \\ 1 & \text{if } \sigma_l = j \text{ and exactly one of } \sigma_{l-1} \text{ and } \sigma_{l+1} \text{ is } < j, \\ 2 & \text{if } \sigma_l = j \text{ and both of } \sigma_{l-1} \text{ and } \sigma_{l+1} \text{ is } < j. \end{cases}
$$

Comparing a sum with an integral it is easy to see that for $r > 0$ and $\varepsilon > 1$,

(3.6)
$$
\sum_{s-r+1}^{\infty} \frac{1}{s^s} \leq \frac{1}{\epsilon - 1} \frac{1}{r^{s-1}}.
$$

Using (3.6) repeatedly in (3.4) we get a bound on Ev_{01} ,

$$
Ev_{01} \leq \lambda + \sum_{k \geq 1} \lambda^{k+1} \sum_{\sigma \in \mathscr{S}_k} \sum_{1 < s_1 < \cdots < s_{k-1}} \frac{1}{s_1^{\epsilon_1(\sigma)} s_2^{\epsilon_2(\sigma)} \cdots s_k^{\epsilon_k(\sigma)} (\epsilon_k(\sigma) - 1) s_k^{\epsilon_k(\sigma)} \cdots (3.7)}
$$
\n
$$
\leq \lambda + \sum_{k \geq 1} \lambda^{k+1} \sum_{\sigma \in \mathscr{S}_k} \frac{1}{\zeta_1(\sigma) \zeta_2(\sigma) \cdots \zeta_k(\sigma)}
$$

where

$$
(3.8) \qquad \xi_j(\sigma) = \varepsilon_k(\sigma) + \varepsilon_{k-1}(\sigma) + \cdots + \varepsilon_{k-j+1}(\sigma) - j, \quad j = 1, \ldots, k.
$$

The variables $\xi_i(\sigma)$ may be considered as random variables on \mathcal{S}_k with uniform distribution and then they have an interesting interpretation. Namely, since $\sigma_k^{-1}, \sigma_{k-1}^{-1}, \ldots, \sigma_{k-j+1}^{-1}$ are the indices which map under σ into the last j values in $\{1,\ldots,k\}$, $\xi_i(\sigma)$ is the number of islands present at time $j = 1, 2, \ldots, k$ among the ordered states $\{1, 2, \ldots, k\}$. Thus the interpretation of the variables $\zeta_1, \zeta_2, \ldots, \zeta_k$ is that $\zeta_1 = \zeta_k = 1$ and if j balls have been dropped into exactly j of $k \geq j$ adjacent urns in a row, then some of the urns containing balls will be contiguous and there will be a number, $\zeta_i \geq 1$, of islands of filled urns. For example, if $k = 9$, $j = 6$, and urns 2, 3, 4, 6, 8, 9 have been filled by the σ balls, then {2, 3, 4}, {6}, {8, 9} are islands and $\zeta_6 = 3$. In a companion paper [DMOS], the following remarkable theorem about ξ_1, \ldots, ξ_k is proved:

THEOREM [DMOS].

(3.9)
$$
E \frac{1}{\xi_1 \cdots \xi_k} = {2k \choose k} \frac{1}{(k+1)!}
$$

Putting (3.9) into (3.7) we have

$$
(3.10) \t E v_{01} \leq \sum_{k \geq 0} \lambda^{k+1} {2k \choose k} \frac{1}{k+1}.
$$

Since

$$
(3.11) \qquad \qquad \binom{2k}{k} \approx \frac{2^{2k}}{\sqrt{\pi k}}
$$

and $\Sigma k^{-3/2} < \infty$, we see that $Ev_{01} < \infty$ if and only if $\lambda \leq \frac{1}{4}$. It follows from Lemma 2 that for $\lambda \leq \frac{1}{4}$ the graph on $\{0, 1, ...\}$ is a.s. disconnected and it follows by monotonicity, or coupling, that the original graph (1.3) is a.s. disconnected for $\lambda \leq \frac{1}{4}$. Since

Selection

$$
(3.12) \t\t\t Ev_{ij} \leq Ev_{01}
$$

it is clear that (1.2) holds if and only if $\lambda > \frac{1}{4}$, so that it may be true that (1.2) is a necessary and sufficient condition for connectedness; at least it agrees on this class of examples.

REMARK. It is likely that the method of \S 2 could be used to at least partially treat other p_{ii} which are homogeneous of degree -1 , e.g.[†]

$$
(3.13) \t\t\t p_{ij} = \lambda/(i+j).
$$

We have not explored such extensions. Note that the form of $p_{ii} = \lambda / max(i, j)$ was used very heavily in (3.4).

REFERENCES

[B] B. Bollobás, *Random Graphs*, Academic Press, New York, 1985.

[DMOS] P.G. Doyle, C. Mallows, A. Orlitsky and L. Shepp, *On the evolution of islands,* Isr. J. Math., this issue.

[ER] P. Erdös and A. Renyi, *On the evolution of random graphs*, Magyar Tud. Akad. Mat. Kutato Int. Kozl. 5 (1960), 17-61.

[K] J. Kahane, *Some Random Series of Functions,* Second Edition, Cambridge University Press, Cambridge, 1985.

[KW] S. Kalikow and B. Weiss, *When are random graphs connected,* Isr. J. Math. to appear.

[RN] F. Riesz and B. Nagy, *Functional Analysis*, Ungar, New York, 1955.

[S] L. Shepp, *Covering the circle with random arcs,* Isr. J. Math. 11 (1972), 328-345.

** Added in proof.* R. Durrett and H. Kesten have given an elegant extension of our results to this class of p_{ij} 's in *The critical parameter for connectedness of some random graphs*, manuscript. They give an exact formula for the critical value, $1/\pi$ in the case (3.13)!