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ABSTRACT 

L. Dubins conjectured in 1984 that the graph on vertices {1, 2, 3 , . . . }  where 
an edge is drawn between vertices i and j with probability p~ = 2/max(i,j) 
independently for each pair i and j  is a.s. connected for 2 = 1. S. Kalikow and 
B. Weiss proved that the graph is a.s. connected for any ~ > 1. We prove 
Dubin's conjecture and show that the graph is a.s. connected for any 2 > t. We 
give a proof based on a recent combinatorial result that for 2 _-< ~ the graph is 
a.s. disconnected. This was already proved for 2 < ~ by Kalikow and Weiss. 
Thus 2 = ~ is the critical value for connectedness, which is surprising since it 
was believed that the critical value is at 2 = 1. 

§1. Introduction 

In an elegant paper [KW], S. Kalikow and B. Weiss made a significant 
extension of the now-classical theory [ER], [B] of connectedness of finite 
random graphs to a class of infinite random graphs. The interesting class of 
infinite random graphs are those on a countably infinite vertex set N where 
each edge is drawn randomly and independently with probability Pij given for 
each pair of vertices i and j in N, and where 0 < Pij < 1 satisfy the basic 
condition that 

(1.1) ~ ~ p~ = ~ for every proper subset A of N, 
iEA jf.a 

which, by the Borel-Cantelli lemma, says that A and A c are connected with 
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probability 1 for every subset A of N. Of course there are uncountably many 
A's so (1.1) does not imply connectedness. 

Under (1.1), the fundamental dichotomy of Kalikow and Weiss [KW] says 
that the event that the graph is connected has probability either 0 or 1. 
Moreover, when it is not connected, they show it has a.s. infinitely many 
components. The general problem is to decide which of the two possibilities 
holds for a given Po satisfying (1.1). It seems difficult to give a necessary and 
sufficient condition on Pij for connectedness under (1.1). We remark that under 
(1.1) a necessary condition for connectedness is that 

(1.2) Evo=oo fo revery iEN,  j E N ,  i ~:j 

where v o = the number of self-avoiding paths from i to j in the graph. It seems 
possible that (1.2) is also sufficient under (1.1). t 

Many results are known [B] about connectedness of graphs in the finite case 
with equal edge probabilities and these results form the basis of the techniques 
used here and in [KW] and are due to Erdos and Renyi [ER]. Since it appears 
difficult to give necessary and sufficient conditions on Po for connectedness to 
hold in the general case of (1.1), it is reasonable to ask about specific choices of 
Pij's. The class of interest here and in [KW] depends on a parameter ~ and is 
given for 0 < X < 2 by 

(1.3) Po = P0(A) =$/max( i , j ) ,  i , j E S  = {1, 2 , . . .} .  

Such random graphs satisfy (1.1) for all A and are interesting because it was 
shown in [KW] that for A > 1 connectedness holds, while for X < ~ disconnec- 
tedness holds, since the probability of connectedness is clearly monotonically 
increasing in A, there is by the fundamental dichotomy theorem [KW] a critical 
~o so that for X > Ao the graph is connected while for X < ~o the graph is 
disconnected a.s. Thus [KW] proved that ] < Ao _-< 1 and it was conjectured that 

Ao = 1 is the actual value. 
Lester Dubins had conjectured long ago that X = 1 was a case of connected- 

hess. We show in §2 that the critical value is ~o = ~ so that Dubin's conjecture is 
true (with room to spare). We show in §3 that (1.2) holds if and only ifA > ], 
which indicates that it may be true that (1.2) is equivalent to connectedness, t 
Although (1.2) is not an easy condition to use, it is easier than directly proving 
connectedness as seen in §3. 

t Added in proof. R. Durrett has given a counterexample to this, to appear. 
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REMARK. Perhaps because the critical value was thought to be at 4 = 1, 

[KW] pointed out the analogy to the fact that the critical value is 4 = 1 in an 

apparently unrelated problem, namely that of  deciding for which 0 < 4 < 2 

arcs of  length 4/n, n = 2, 3 , . . .  cover a unit circumference C under random 

rotations. [KW] refer to [S] (see [K, ch. 11] for a more readable proof) where it 

is shown that the arcs cover Cinfinitely often with probability 0 or 1 according 

as 4 < 1 or 4 > 1. Despite that 20 = ~ in the connectedness problem and 20 = 1 

in the covering problem, the two problems are rather more directly related as 
follows. Namely if A c N is a component of  the graph then there is no link 

between A and A c (since there are uncountably many A c N this can occur for 

some A even though it has probability 0 for each fixed A by (1.1)). Similarly 

each fixed point x E C is covered with probability one by the arcs but since Cis 

uncountable some point may not be covered. The analogy is actually much 

stronger: The connectedness problem is exactly equivalent to a covering 

problem by a random union U of  subsets B o of  I = (0, 1). Let 

(1.4) B,j = {x E(0, 1) :xi • xj} 

where x = .  x~x2.. ,  is the binary expansion of  x (the set of  x where this is 

ambiguous is countable and does not matter). Now include Bij in the union U 

with probability P0. Then U = I w.p. 1 if and only if the graph with edge 

probabilities p~j is connected. Indeed a subset A of N has no link to N - A, i.e. 

the graph is not connected if and only i fx  = xA = .  x~xA..,  where x~ = z(i  CA) 

is not covered by U. The equivalence of  the two problems is not useful because 

the methods of [S] and [K] break down when the covering sets are not 
intervals. The sets B U are far from intervals and have many holes. 

We give in §3 a somewhat different proof of  the theorem of  Kalikow and 

Weiss [KW] that 2o > r~ based on an interesting combinatorial identity 
[DMOS]. Whereas [KW] prove that for 4 < ~ the graph is disconnected, this 

proof shows that it also is disconnected for 4 = ~. It is perhaps surprising that 
one can answer the question for every 4, even at the critical value. It would be 
interesting to consider other p~j's, e.g. Pu -- 4(i + j )  or p;j = 4 / ~ 2 .  t 

§2. 20~¼ 

We prove that if 2 > ~ then the graph is a.s. connected by sharpening the 

method of [KW]. Their method relies on the technique of Erdos and Renyi 

* See footnote at the end of the paper. 
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[ER, B] to prove that ifp 0 ~ c/n for a graph on { 1, 2 , , . . ,  n } then ifc > 1 there 
is a giant component, i.e. one whose size is a positive fraction of n. We sharpen 
the method by extending the technique of [ERA to finite graphs with non- 
constant edge probabilities using the method of Chebysheff, Esscher, Chernoff, 
Bahadur-Rao, Donsker-Varadhan, now called large deviation theory. 

The following lemma is implicit in [KW]. 

LEMMA 2. Suppose 2 has the property that there exist e > O, 7 > O, J > 0 
such that for large n the subgraph G(n) on n vertices, 

{LenA+ 1,LenA+ 2 . . . . .  LenA+ n} 

with edge probabilities Po = 2/max(i,j) has maximum component of  size at 
least yn with probability at least J. Then the graph is connected, i.e., 20 > 2. 

PROOF (after [KW]). Consider any i < LenA. The chance that i is linked 
directly to some element of the maximum component of the subgraph G(n) is 

at least 

1 - -  1 ~ e - ~ / ~ l + "  ) a= 0 
n(1 e 

given that the maximum component of G(n) is at least of size 7n. Thus any 
pair i and j each less than Lena are connected to each other via the maximum 
component of G(n) with probability at least J - 0  2. But we can choose an 
infinity of disjoint subgraphs G(nk) by choosing nk+~>nk(e+l)/e, 
k = 1, 2 , . . . ,  and i and j are independently linked to each other through the 
maximum component of G(nk) with probability at least J .  0 2 for each k. Thus i 
and j are linked with probability one. Since there are only countably many 
pairs (i , j)  we are done. • 

It remains only to prove that if2 > ¼ then the hypothesis of the lemma holds, 
i.e. for large n, the maximum component of G(n) = {Lena + 1 , . . . ,  Lena + n } 
is of size at least 7n with probability at least J. 

Choose an integer L > 1 and consider the graph G on { 1, 2 , . . . ,  n } where n 
is a multiple of L and where the edge probabilities are for i, j E { 1 , . . . ,  n } 
where n is a multiple of L and where the edge probabilities are for i , j  E 

{ 1 , . . . , n } ,  

_A 2 1 if max( i , j )EB A { l - l =  n + l  l }n.  
(2.1) Pb = rrt L . . . . .  
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It is clear by monotonicity, or coupling, that the maximum component of  G(n) 

is stochastically at least as large as that of  G since it is easy to see that 

(2.2) PU ~-~ PkenJ+i,kenA+j for  all i a n d j ~ { l , . . . ,  n}, 

and increasing the number of  edges can only increase the size of the maximum 

component. We need to show that G has a giant component. 

We first seed, or start off, a large component. Thus suppose at0, 1 = 1 . . . .  , L 

are arbitrary but fixed integers. We first show that we can choose t~ > 0 and 

0 < 7 < 1/(2L) so that for large n, the subgraph G' of  G consisting of the union 

of Bf, the first M = LnTJ elements of each block BI, 

A f l -  1 l -  1 
(2.3) Bf = ~ n + l , . . .  

L ' L 
n + M } C B I ,  1=  1 , . . .  ,L ,  M=LnTJ  

has at least at0 elements each joined to element 1 of  G by an edge, with 

probability at least t~. 

To see this note that the number of elements of Bf linked to 1 by an edge 
with edge probabilities p~ in (2.1) is asymptotically Poisson as n--* oo with 

parameter ttt-~,, =2~,/(e + l /L).  Since this is a fixed number and ato, l = 
1 , . . . ,  L are fixed this will have some positive probability, call it t~, for all large 

n for any fixed 2, 7, e, L. 
Now let At0 be the actual set of  elements of B; and note that the union of  At0, 

l = 1 . . . . .  L are all connected to 1 and hence connected. IfAto, An . . . .  ,Ark, 
l = 1 , . . . ,  L have been defined for a k > 0, define A~,k+~ as the set of  

elements of  B~ - B; which are directly linked by an edge to some element of  

Alk Id A2k (.J " ' "  0 ALk and which are not already in any of  A~0, A l l , . . . ,  Ark. 
In other words, At,k+~ are those elements of  B l -  B[ which are connected 
by a path of  length k + 1 but not by a path of smaller length to some element of 

A,0 tJ A20 tA • • • U AL0. Denote lArk [ by ark, l = 1 , . . . ,  L, k >= 0. 
If for some I and some k 

(2.4) ato + an + • • • + alk > 7n 

then there is a giant component because the maximum component exceeds 

that of  the component of  the element 1 which is already a positive fraction 7 of  

n if (2.4) holds for some l and k. However, if  (2.4) fails for k and each l, then we 

show that the process can be continued to stage k + 1 with high probability 

and so on until (2.4). does hold with positive probability: 
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To see this, suppose there exists a 0 > 1 and a vector ( ~ l , . . . ,  ~L) with 

positive entries such that for k'  < k, 

L L 

(2.5) ~ ~tat.k,+l > 0 ~ ~lal,k,. 
1~1 I ~ 1  

We will actually choose ~l = 1/x/Q, l = 1 . . . . .  l for a sufficiently large L. 
We want to show that with high probability (2.5) continues to hold for 

k ' = k .  Now given alo . . . .  , a l k  for I = l , 2 , . . . , L  and M ,  a~.k+~ is a 
random variable conditionally stochastically equal to the sum of 

n / L  - M - all -- a,2 . . . . .  alk  independent Bernoulli variables with 

success probability from (2.1) given by 

L 2 1 
(2.6) P1 ~ 1 - (1 - nl)a,k(1 -- n2) a~..  .(1 - -  ZtL) a~ ~,  Y~ ~ a t , k - - .  

t '-~ e + I ' l L  n 

For general 1 > 1, al,k + I is a random variable which is conditionally stochasti- 

cally equal to the sum of n / L  - M - at~ - at2 . . . . .  ark independent Ber- 
noulli variables with success probability from (2.1) given by 

(2.7) 

A 
Pt = 1 - ( 1  - l [ i ) a ' k + ' " + a u ' ( 1  - -  / [ 1 + 1 )  a ' + ' . ~  ° • .(1 - XL) ~,~ 

( a l k + ' ' ' + a l k ) +  ~ ~ a e k  - 
e=l+,  ~ + I ' / L  n 

Since M < ~,n and (2.4) holds for k, 

n 
(2.8) - - M - all  

L 
. . . . .  

so that al,k +l is conditionally stochastically larger than the sum of  n(11L - 2y) 

independent Bernoulli variables with success probability as in (2.7), l = 

1 , . . .  ,L .  Since at ,k+t,  l ----1, . . .  , L  are independent, by (2.7), (2.8), and 

Chernott's inequality, for any a > 0 we have with pt as in (2.7), 

' M) P ~tatk > • ~tat,k +1 [al0 . . . .  , ark, l ffi 1 . . . .  , L ,  
1 l - I  

(2.9) <---- E(e'~Oz~"¢la~-r~"~a"k÷')[  at0, • • •, alk,  1 = 1 , . . . ,  L, M)  

L 
<---- e aO~'~''~a" IX (e-"¢~Pl + 1 - -  p l )  n(l/L-2r). 

1--1 
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Since 1 - x < exp( - x)  we have that the rhs of (2.9) is less than 

(2.10) exp ~tatk -- n - 2y (1 - e-"¢O p < e-~(a'k+"'+aa ) 
1 1 1 

for some r / >  0, provided that for small positive a the exponent on the left in 

(2.10) is less than that on the right of  (2.10). For this we need that 

(2.11) 0 Y~ ~lalk -- n -- 2 ~lPl < -- q(alk + " ' "  + an`). 
Iffil I 1 

Putting in the approximation to Pt given in (2.7) we need 

(2.12) 

L L {  
0 Y~ ~ l a t k -  2 Y~ ~l ark + " ' "  + ark 

/ -1 l--I ~ ~I"I-f/Z 

< - rl(alk + • • • + an,). 

t'-,+, e _~ / , -~ j \~  - 2 

In order that we can find 0 > 1, e > 0, r / >  0 such that (2.12) holds for all 

atk,. • . ,  an` it is necessary and sufficient that the coefficient ofatk  on the left of  
(2.12) is less than the coefficient of  azx on the fight for l = 1 , . . . ,  L. That is we 
must have for l = 1 . . . . .  L,  for some 0 > 1, r / >  0, e > 0, 

(2.13) 
/, 1 1--1 ] 

Since 0 > 1, e > 0, q > 0 are otherwise arbitrary we must require 

[ L , ] 
~, l = 1 ,  ,L .  (2.14) ~ t < 2  t~t~--t,-,,- l" 1 . . . .  

This must hold for some positive ~ . . . . .  ~L, and if it does, then it will follow 
from (2.9) that 

P ~lat,k+l < 0  2 ~Lal.k l a t o , . . .  ,ark, l =  1, .... L ,  
l 1 l - I  

(2.15) __< e_~Ca,~+... +a,~. 

But then with the remaining probability we will have 

L L 

(2.16) Y. ~tal,k+l > 0  ~ ~lal,k 
l - - I  l - - I  
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and so (2.5) continues and so, as long as k is such that (2.4) holds, 

L L L 

(2.17) Y~ ~tal,k > 0 k ~ ~lal,o > 0 k min ~1 Y~ al,o. 
I - 1  I - 1  I < I < L  1-1 

Since 0 > 1 this says that Z~lat,k is large and since ~l > 0 for I = 1 , . . . ,  L,  we 
must  have that ark > 0 for some 1 -- 1 . . . . .  L and the process continues until 
(2.4) holds on a set of positive probability. This probability is positive because 
the upper bound (2.15) forms the kth  term of  the series 

(2.18) ~ e -  @~mi,l ~,,L ~t/rnaxl~t~L ~t)Z~-, a,.o 

k - 0  

which sums to less than 1 because of  the last bound in (2.17) and the fact that 
al,0, l = 1 , . . . ,  L can be chosen large. Thus we need to show that if 2 > ~ then 
positive ~t in (2.14) can be found. But (2.14) is equivalent to the maximum 
eigenvalue of  the matrix Au, = 1/max(l, l'), 1 <= l, l" < L ,  being larger than 1/A. 
We will show that as L -~ ~ this max imum eigenvalue is at least 4, so that if 
2 > ~ there will exist an L such that ~ , . . . ,  ~z exists to make the proof  work. 

Indeed A is a symmetric matrix with positive entries whose largest eigen- 
value is positive by Frobenius's theorem. By the Weyl-Courant  lemma, [RN, 

p. 237] the largest eigenvalue is given by 

(2.19) 

where 

(2.20) 

Since 

(2.21) 

while 

(2.22) 

max (A£, £) ->_ (A£', £') 
~o  (~,~) (~' ,£ ')  

I 
~f ~----~., 1 ffi 1 . . . . .  L .  

41 

L L I 

(A~', ¢ ' ) =  ,-~Y" ,,-,~" x/,TV,77 max(l, i,) 

L l l - l l  1 L 1 

= ?_, ?_, t-, 7t, , 
L 1 

= 4  ~ 7 + O ( 1 )  
I - - I  

L 1 L 1 
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we see from (2.19) that the maximum eigenvalue of A is asymptotically at 
least 4. It can be shown directly that the limiting maximum eigenvalue is 4 but  

we do not need this and omit  it. 
The proof  is complete. 

{}3. 2o->_~ 

We give a new proof  that i f2 < ] then the graph is a.s. disconnected which is 
similar to the proof  of [KW] but is slightly tighter and enables one to show that 
2 = ~ is also a case of disconnectedness. We need the following lemma. 

L E M M A  2 .  I f  v~j is the number of  self-avoiding paths from i to j in a graph 
satisfying (1.1) and i f  for some i ÷ j,  

(3.1) Ev• < oo, 

then the graph is a.s. disconnected. 

PROOF. IfEvij < oo, then by replacing a finite number  ofpu 's  by zero (call 
the new pu's, pb) we can make Ev b < 1 where s' refers to pb. But then 

(3.2) P(v~ > o) <= Ev~ < 1 

and so the graph with pb has probability less than one of  being connected. But 
the same must  then be true for the original Pij since a finite number  of  Bernoulli 
edge choices has positive probability to produce all failures or non-edges. By 
the fundamental  theorem [KW] the probability that the original graph is 
connected must  be zero since it is < 1. • 

We next give a formula for Evo. This is slightly heater if we add the vertex 0 
to N =  {1, 2 . . . .  } keeping the same rule (1.3) for p,.j. Then the expected 
number  of self-avoiding paths from vertex 0 to vertex 1 is 

(3.3) 

eVot = pot + Y ~ Z 
k > t aESCk 1 <sl < . . "  <s t  

• . .  p(so~_,, s..)p(so~, 1) 

p(O, so)p(s,, ,  s , )  

where the sum is over all k _-> I and all k + 1- step paths from 0 to 1 which visit 

distinct vertices st < s2 < • • • < Sk before visiting 1 in some permuted order 
aEo~ '  k, the set of permutat ions on {1, . . . .  k}. Using (1.3) we get forp# = 
2/max(i,j), 
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(3.4) 

Y, Y, X - . .  
1 k>_l oEAet~ l<Sl<.  "'<skSffl max(so,, sos) max(so,_,, so,) so, 

1 
=4+ y, Y, 

k ~ | Oe~f~ok 1 <$1 ( ' ' '  ($k  S~I(O)S2 ~(O)" " " S~ k(O) 

The powers ej(tT), j = 1 , . . . ,  k in (3.4) are either 0, 1, 2, where if  we let 

e0 -- So -- 0, and ek + ~ ---- -- 1, and s_ l -- 1 then for 1 < j < k, 

(3.5) ej(e) = if~t 

if~t 

Comparing a sum with an 

= j a n d  neither of  0"1_ l and at+l is < j ,  

= j a n d  exactly one of  at_ 1 and ~I+, is < j ,  

= j  and both of  o'/_ 1 and trt+~ is < j .  

integral it is easy to see that for r > 0 and e > 1, 

(3.6) ~ 1 < ~ I 
s - , + l s  * e - I  r ~-~ 

Using (3.6) repeatedly in (3.4) we get a bound  on Eros, 

E v o l < R  + y~ Rk+l 
k > l  

(3.7) 

_-<2 + Y~ 2 k+l 
k > l  

where 

I 

i<,,< <,,_ s, s2 • -- 

I 
y, 

(3.8) ~j(a) = ek(¢) + ek-1(a) + "" + ek_j+~(Cr) --j, j = I ..... k. 

The variables ~(a) may be considered as random variables on ~k with 

uniform distribution and then they have an interesting interpretation. 

Namely, since af ~, crf ira, ..., crfjj + ~ are the indices which map under a into 

the last j values in { I,..., k), ~(cr) is the number of islands present at time 

j = I, 2 .... , k among the ordered states { I, 2 ..... k}. Thus the interpre- 

tation of the variables ~l, ~2 ..... ~k is that ~z -- ~k = I and ifj bails have been 

dropped into exactly j of k >_-j adjacent urns in a row, then some of the urns 

containing bails will be contiguous and there will be a number, ~ >_- I, of 

islands of filled urns. For example, ifk = 9,j = 6, and urns 2, 3, 4, 6, 8, 9 have 

been filled by the o" balls, then {2, 3, 4}, {6}, (8, 9} are islands and ~6 = 3. In a 

companion paper [DMOS], the following remarkable theorem about ~i ..... ~k 

is proved: 
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(3.1o) 

Since 

THEOREM [DMOS]. 

(3.9) E ~1 "'~k = (k + 1)! 

Putting (3.9) into (3.7) we have 

E v o , < ~  ~.k+l (2k) ~ 1 
k>_-0 k + 1 

22k 
,31,, 

a n d  Z k  -3/2 < o0, we see that Evo~ < oo if and only if 2 < ]. It follows from 
Lemma 2 that for 2 < ]  the graph on {0, 1 , . . . }  is a.s. disconnected and it 
follows by monotonicity, or coupling, that the original graph (1.3) is a.s. 
disconnected for 2 < ~. Since 

(3.12) Evij <-_ Evo, 

it is clear that (1.2) holds if and only if2 > ~, so that it may be true that (1.2) is 
a necessary and sufficient condition for connectedness; at least it agrees on this 
class of examples. 

REMARK. It is likely that the method of§2 could be used to at least partially 

treat other Pij which are homogeneous of degree - 1, e.g.* 

(3.13) Pu = 2/(i +j) .  

We have not explored such extensions. Note that the form ofpo = 2/max(i , j)  
was used very heavily in (3.4). 
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